

Last update: June 3, 2024

rms222@cam.ac.uk Department of Chemistry University of Cambridge Cambridge CB2 1EW United Kingdom Personal website

RESEARCH INTEREST

- Developing high-throughput microfluidic assays for biophysical data generation
- Leveraging image-based machine learning for characterising bio-molecular states
- Predicting protein co-localisation using natural language processing.

My research demonstrates a strong ability to characterise biophysical mechanisms through novel method development. By implementing machine learning based data analysis into a high-throughput screening platform, I have developed a strong understanding of the challenges in generating and analysing real world datasets.

I have demonstrated experience in both computer vision for characterising phases of biomolecular species from microscopy data, and natural language processing for prediction of condensate recruitment from protein sequence.

EDUCATION

PhD in Chemistry University of Cambridge, UK 2022 - 2026

St John's College

Supervisor: Prof. T. P. J. Knowles

Topic: Machine Learning and Experimental Physical Chemistry to characterise protein phase separation

Knowles Lab

MChem in Chemistry University of Oxford, UK

Lady Margaret Hall College 2018 - 2022

Grade: First Class

Masters Supervisor: Prof. M. Krishnan

A-Levels Aquinas College

Stockport 2016 - 2018

Maths/Chemistry/Physics: A*/A*/A*

FIRST AUTHOR PUBLICATIONS

2024

(1) Ausserwöger, H; Scrutton, R; Sneideris, T; Fischer, C. M; Qian, D; de Csilléry, E; Saar, K. L; Białek, A. Z; Oeller, M; Krainer, G; Franzmann, T. M; Wittmann, S; Iglesias-Artola, J. M; Invernizzi, G; Hyman, A. A; Alberti, S; Lorenzen, N; Knowles, T. P. J; Biomolecular condensates sustain pH gradients at equilibrium driven by charge neutralisation bioRxiv

EMPLOYMENTS

Consultant Cambridge, UK Transition Bio Ltd., UK Jan 2024 - Present

Undergraduate Researcher

Department of Chemistry

Supervisor: Prof. T. P. J. Knowles

Topic: Sequence based prediction of *in vivo* protein condensation

University of Cambridge, UK

Jun - Oct 2021

Undergraduate Researcher

University of Sheffield, UK Department of Chemistry Jun- Sep 2020

Supervisors: Prof. Julia Weinstein, Prof. Anthony Meijer.

Topic: Density functional theory modelling of excited electronic states in platinum complexes

CODING SKILLS

Languages: Python

Libraries: PyTorch, TensorFlow, scikit-learn

AWARDS, GRANTS AND HONORS

Lady Margaret Hall, Oxford Christopher Dobson Prize for Finals examination results

2021

TEACHING

Masters Level Teaching	University of Cambridge, UK
Natural Sciences - Soft Matter: Chemistry at the small scale	2022-2024
Natural Sciences - Project supervisor	2023-2024
Systems Biology - Project supervisor	2022-2023
Undergraduate Level Teaching	University of Cambridge, UK
Natural Sciences - Thermodynamics	2022-2023

Natural Sciences - Chemical Kinetics Natural Sciences - Laboratory Demonstrating

2022-2023 Online Tutoring

2022-2023

Other AS Level (UK, 16-17 years old) - Chemistry GCSE Level (UK, 15-16 years old) - Chemistry, Maths

2020-2021 2018-2020

CO-AUTHOR PUBLICATIONS

2024

(1) Fischer, C. M; Ausserwöger, H; Sneideris, T; Qian, D; Scrutton, R; Qamar, S; St George-Hyslop, P; Knowles, T. P. J; Temperature-induced changes in protein interactions control RNA recruitment to G3BP1 condensates bioRxiv

2023

(1) Qian, D; Ausserwöger, H; Arter, W. E; Scrutton, R; Welsh T. J; Kartanas, T; Ermann, N; Qamar, S; Fischer, C; Šneideris, T; St George-Hyslop, P; Pappu, R. V; Knowles, T; Linking modulation of bio-molecular phase behaviour with collective interactions bioRxiv